Operating Engineers Seminar 2017

Bob Ford Jeff Volovsek

Overview

- Annual energy consumption to demand
- Heat recovery updated requirements
- Process cooling best practices

How does District Energy compare?

District Energy benefits

- Rate stability
- Reliability
- Requires less mechanical space
- Environmental performance
- Simplicity of operations
- Integration of renewables

District Energy Interface

Metering

Combined Rate Summary Heating

District Energy customers are paying less for our services today than 35 years ago (adjusted for inflation) Combined Rate Summary 1984-2018

District Energy vs. On-Site

Year

Energy and District Rates

- Energy = (Flow)*(Supply Temp Return Temp)*Conversion Factor
 - Hot water unit of energy is Megawatt Hours
 - Hot water demand is measured in Kilowatts
 - Chilled water unit of energy is Ton-hr
 - Chilled water demand is measured in Tons
- District Energy use a two part rate structure
 - Total Costs = Energy + Demand + Surcharges + City Fee + Sales Tax

How much can improvements help?

Hot Water Energy Usage

Month	2015 [MWh]	2016 [MWh]
October	74.0	69
November	132.2	124
December	188.8	177
January	212.5	199
February	169.3	158
March	139.2	130
April	79.6	74
May	37.0	35
June	9.1	g
July	9.1	g
August	9.1	9
September	31.5	29
	1.091	1.020

Equivalent kWh (1000X)	1,091,400	1,020,000
Utilization Hours	1700	1700
Equivalent Demand (kW)	642	600

Combined Rate Summary Cooling

District Energy customers are paying less for our cooling services today than 26 years ago (adjusted for inflation) Combined Cooling Rate Summary 1993-2018

Fiscal Year

Rolling 1-Hour Peak Load

Cooling Demand Calculation - Daily Peaks

Heat Recovery Updated Requirements

- IECC Current Requirements for Heat Recovery on Dedicated Outside Air Systems (DOAS) and Mixed Air Systems
- Different types of heat recovery options
- Potential control sequence issues

ASHRAE Climate Zone Map

All of Alaska in Zone 7 except for the following Boroughs in Zone 8: Bethel, Dellingham, Fairbanks, N. Star, Nome North Slope, Northwest Arctic, Southeast Fairbanks, Wade Hampton, and Yukon-Koyukuk

Zone 1 includes: Hawaii, Guam, Puerto Rico, and the Virgin Islands

IECC Current Heat Recovery Requirements

TABLE C403.2.7(1) ENERGY RECOVERY REQUIREMENT (Ventilation systems operating less than 8,000 hours per year)

	PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							
CLIMATE ZONE	≥ 10% and < 20%	≥ 20% and < 30%	≥ 30% and < 40%	≥ 40% and < 50%	≥ 50% and < 60%	≥ 60% and < 70%	≥ 70% and < 80%	≥ 80%
	DESIGN SUPPLY FAN AIRFLOW RATE (cfm)							
3B, 3C, 4B, 4C, 5B	NR	NR	NR	NR	NR	NR	NR	NR
1B, 2B, 5C	NR	NR	NR	NR	≥ 26,000	≥ 12,000	≥ 5,000	≥ 4,000
6B	≥ 28,000	≥ 26,5000	≥ 11,000	≥ 5,500	≥ 4,500	≥ 3,500	≥ 2,500	≥ 1,500
1A, 2A, 3A, 4A, 5A, 6A	≥ 26,000	≥ 16,000	≥ 5,500	≥ 4,500	≥ 3,500	≥ 2,000	≥ 1,000	>0
7,8	≥ 4,500	≥ 4,000	≥ 2,500	≥ 1,000	>0	>0	>0	>0

For SI: 1 cfm = 0.4719 L/s.

NR = Not Required.

IECC Current Heat Recovery Requirements

TABLE C403.2.7(2)

ENERGY RECOVERY REQUIREMENT (Ventilation systems operating not less than 8,000 hours per year)

	PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							
CLIMATE ZONE	≥ 10% and < 20%	≥ 20% and < 30%	≥ 30% and < 40%	≥ 40% and < 50%	≥ 50% and < 60%	≥ 60% and < 70%	≥ 70% and < 80%	≥ 80%
	Design Supply Fan Airflow Rate (cfm)							
3C	NR	NR	NR	NR	NR	NR	NR	NR
1B, 2B, 3B, 4C, 5C	NR	≥ 19,500	≥ 9,000	≥ 5,000	≥ 4,000	≥ 3,000	≥ 1,500	> 0
1A, 2A, 3A, 4B, 5B	≥ 2,500	≥ 2,000	≥ 1,000	≥ 500	> 0	> 0	> 0	> 0
4A, 5A, 6A, 6B, 7, 8	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0

For SI: 1 cfm = 0.4719 L/s.

NR = Not required

Proposed for 2018

- 70% efficiency at 0 Deg. F at full rated air flow
 - As air flows are less than design the efficiency should increase slightly

Types of Heat Recovery

Types of Heat Recovery

Heat wheel or enthalpy wheel

Klingenburg Energy Recovery

The Renewable Energy Hub

How to Calculate Heat Recovery Efficiency

• Thermal Efficiency

$$u_t = \frac{(t_2 - t_1)}{(t_3 - t_1)}$$

How to Calculate Heat Recovery Efficiency

$$u_t = \frac{(t_2 - t_1)}{(t_3 - t_1)} \qquad \qquad u_t = \frac{(40 - (-20))}{(70 - (-20))} \qquad \qquad u_t = .67 = 67\%$$

Don't need to know the final exhaust temperature to calculate the thermal efficiency. Assuming equal airflows on both sides: Who knows what t4 would be?

How to Calculate Heat Recovery Efficiency

- For air to air heat exchangers and coil run around loops thermal efficiency is the same as total efficiency
- For enthalpy wheels the efficiency has to include the moisture transfer between the air flows as well
- Moisture Efficiency $u_m = \frac{(x_2 x_1)}{(x_2 x_1)}$
- Enthalpy Efficiency

 $u_h = \frac{(h_2 - h_1)}{(h_3 - h_1)}$

Potential Control Sequence Issues

- Heat or energy wheels
 - Slow down or stop for frost mode protection
 - Don't have even heat throughout the air stream
 - Allows contaminates from the exhaust air stream into the fresh air stream

Temperature Varies as Wheel Spins

Frost Protection

- Many air to air exchangers have a bypass damper to keep moisture from freezing in the heat exchanger
 - Can not have freeze stat directly after bypass damper
 - May need to have a time delay freeze stat that gives the heating valve time to open
 - These units allow for completely separate airstreams

Process Cooling Best Practices

- District Energy provides cooling year round throughout the Saint Paul cooling loop
 - Summer operation
 - Winter operation
- Tricks to make the process cooling more resilient and more efficient
- Start planning ahead for cooling system maintenance
 - Equipment that needs 24/7 operation for critical programmatic needs should have an independent operational backup

District Cooling Year Round Operation

• Summer

- Provide chilled water June through September that is 42 Deg. F or colder.
- Winter operation
 - When there are no latent cooling requirements the supply temperature can, but is not always, reset to 50 Deg. F.
- The minimum differential pressure to the building remains the same year round.

Optimizing Process Cooling Efficiency

- Select equipment and associated heat exchangers to operate at chilled water supply temperature of 60 Deg. F or warmer.
- If process loads are less than 20% of building thermal comfort loads, plan to have a dedicated process cooling heat exchanger and associated pump and valves.

Proposed Piping and Instrumentation Diagram (P&ID)

What Happens if there is Maintenance?

- District Energy will work with you in advance of any planned shut down to coordinate the timing of the cooling outage.
- District Energy will help to identify options for hoses or auxiliary connections for once through cooling if the building loads can be met in this way.
- District Energy can help in the design and selection of backup equipment for critical process loads to be permanently installed at the building in the event of a future cooling planned or unplanned outage.

