District energy can reduce the use of ozone-depleting refrigerants, reduce potable water usage at the building, and use energy more efficiently.

District Energy developed, installed, owns and operates 144 solar thermal collectors atop the Saint Paul RiverCentre. The collectors measure 8 ft by 20 ft and make-up 21,000 square feet of area used to collect solar heat to generate hot water, reaching peak production over 1.2 MWt. The hot water is used to heat the building and heat the hot water for restrooms and kitchen usage. Once the Saint Paul RiverCentre has enough heat and hot water, the excess heat is directed into the District Energy heating network to share with other customers. This solar thermal array is the first in the United States to be integrated into a district heating system and is the largest solar hot water installation of its kind in the country.
The operations rely on a wood yard 3 miles from the plant, Environmental Wood Supply (EWS). EWS processes approximately 250,000 tons of wood residues into wood chip fuel each year. Up to 45 truckloads of wood chips are delivered to the plant each day. Wood chip fuel primarily comes from tree trimmings, damaged tree removal, habitat restoration, and forest residues.

The delivery and storage area supports solid fuel delivery, solid fuel storage, and energy storage. The wood chips unloaded here are sent to 2 wood storage sites that can store up to 12 hours of wood for overnight usage by the wood-CHP boiler. Coal is unloaded here and dispatched directly into the coal boiler (primarily in winter months). Ash is a by-product of combustion of solid fuels. Ash from the wood-CHP boiler can be repurposed for agricultural land application. Wood ash can be used as a landfill cover.

There are 2 thermal tanks utilized in the operation. The tank at the Kellogg operations can hold 2.5 million gallons of hot or chilled water, acting as a giant thermos to store the energy until it is needed by the system. This tank is 72 feet high by 80 feet in diameter.

The wood-CHP boiler is approximately 9 stories high (100 feet) and combusts wood chips and natural gas to generate steam. The majority of the fuel is wood chips (approximately 85%). Natural gas is added to the fuel mix to add intensity and consistency to the combustion process, allowing the wood to burn more efficiently. The temperature inside the boiler can reach 1750°F. Pipes lining the boiler walls are filled with water that absorbs heat to generate steam at 1,250 pounds per square inch. The steam then travels to a steam drum at the top of the boiler. This steam is delivered to the turbine for use in the combined heat and power (CHP) process. Vapor is formed from the heat and moisture of the combustion of the natural gas and the wood (i.e. exhaust gas). This vapor can be seen as a plume leaving the stack above the plant.

Chilled water produced at night maximizes the benefits of off-peak electricity.

The CHP-wood boiler generates steam. After this steam is superheated, it is used to push the rotating blades inside the turbine. The turbine rotor spins at nearly 100 revolutions per second. High pressure steam from the boiler pushes through the turbine blades, spinning a shaft. As the shaft spins the generator, the rotation in a magnetic field produces electricity. The mechanical energy output from the turbine is converted by the generator to electrical energy and produces an electric current. The turbine can generate up to 37 megawatts of electricity. 25 megawatts are sold to the grid through the local electric utility. Some of the remaining electricity is used for plant operations. After pushing the turbine, the high-pressure steam is reduced to low-pressure steam, which is captured and used to heat water for the District Energy hot water loop. It is the production and capture of both heat and electricity that defines a combined heat and power or “cogeneration” production system.

The delivery and storage area supports solid fuel delivery, solid fuel storage, and energy storage. The wood chips unloaded here are sent to 2 wood storage sites that can store up to 12 hours of wood for overnight usage by the wood-CHP boiler. Coal is unloaded here and dispatched directly into the coal boiler (primarily in winter months). Ash is a by-product of combustion of solid fuels. Ash from the wood-CHP boiler can be repurposed for agricultural land application. Wood ash can be used as a landfill cover.

There are 2 thermal tanks utilized in the operation. The tank at the Kellogg operations can hold 2.5 million gallons of hot or chilled water, acting as a giant thermos to store the energy until it is needed by the system. This tank is 72 feet high by 80 feet in diameter.

The wood-CHP boiler is approximately 9 stories high (100 feet) and combusts wood chips and natural gas to generate steam. The majority of the fuel is wood chips (approximately 85%). Natural gas is added to the fuel mix to add intensity and consistency to the combustion process, allowing the wood to burn more efficiently. The temperature inside the boiler can reach 1750°F. Pipes lining the boiler walls are filled with water that absorbs heat to generate steam at 1,250 pounds per square inch. The steam then travels to a steam drum at the top of the boiler. This steam is delivered to the turbine for use in the combined heat and power (CHP) process. Vapor is formed from the heat and moisture of the combustion of the natural gas and the wood (i.e. exhaust gas). This vapor can be seen as a plume leaving the stack above the plant.

Chilled water produced at night maximizes the benefits of off-peak electricity.

The CHP-wood boiler generates steam. After this steam is superheated, it is used to push the rotating blades inside the turbine. The turbine rotor spins at nearly 100 revolutions per second. High pressure steam from the boiler pushes through the turbine blades, spinning a shaft. As the shaft spins the generator, the rotation in a magnetic field produces electricity. The mechanical energy output from the turbine is converted by the generator to electrical energy and produces an electric current. The turbine can generate up to 37 megawatts of electricity. 25 megawatts are sold to the grid through the local electric utility. Some of the remaining electricity is used for plant operations. After pushing the turbine, the high-pressure steam is reduced to low-pressure steam, which is captured and used to heat water for the District Energy hot water loop. It is the production and capture of both heat and electricity that defines a combined heat and power or “cogeneration” production system.

The use of local wood residues puts more than $10 million annually into the local economy for biomass fuel.

The control room is the central management station for the entire heating, cooling, and combined heat and power system. The control room is staffed by 4 operators that utilize an electronic monitoring system to observe and manage the conditions for the plant and production, fuel intake, heating and cooling distribution, and satellite facilities, including the 10th street chiller plant and the solar thermal array.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.

The first solar thermal array in the United States to be integrated into a district heating system.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.

The use of local wood residues puts more than $10 million annually into the local economy for biomass fuel.

The control room is the central management station for the entire heating, cooling, and combined heat and power system. The control room is staffed by 4 operators that utilize an electronic monitoring system to observe and manage the conditions for the plant and production, fuel intake, heating and cooling distribution, and satellite facilities, including the 10th street chiller plant and the solar thermal array.

The first solar thermal array in the United States to be integrated into a district heating system.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.

The first solar thermal array in the United States to be integrated into a district heating system.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.

The first solar thermal array in the United States to be integrated into a district heating system.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.

The first solar thermal array in the United States to be integrated into a district heating system.

The District Energy boilers combust solid, liquid, or gas fuels to generate either steam or hot water. The boiler walls are lined with pipes filled with water, which is quickly heated by the fire and changes to steam (or remains as hot water). The steam or hot water is utilized to heat the hot water loop serving customers. The 4 oil/natural gas boilers are equipped to burn a liquid or gas fuel, not solid fuel, and have a combined capacity of 106 MW. The 2 coal/gas boilers are equipped to burn natural gas or solid fuels, and have a capacity of 88 MW. The primary source of system heat is the output of the wood-CHP boiler, so the coal/natural gas/bio- boilers are utilized to meet peak needs or when the wood-CHP boiler is undergoing maintenance.