COOLING COIL OPPORTUNITIES

Lon W. Fiedler

October 30, 2019

COIL PARAMETERS

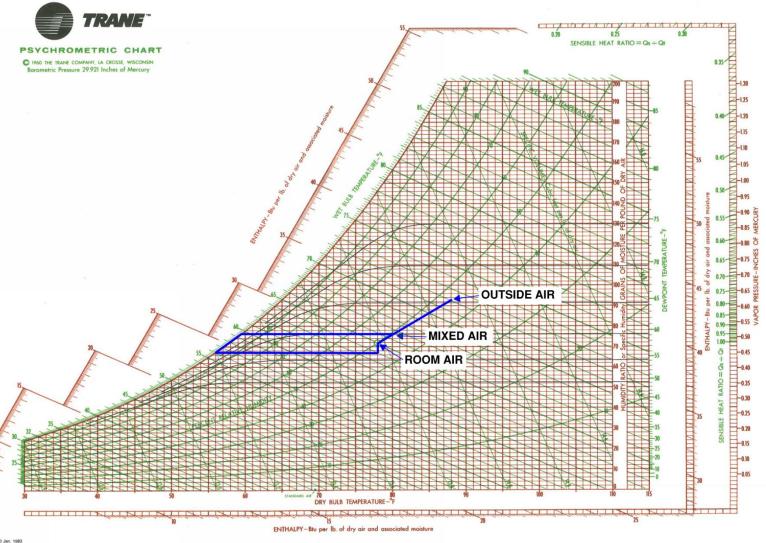
- Water Supply Temperature
- Water Temperature Rise Across the Coil
- Water Velocity
- Water Pressure Drop
- Heat Transfer Fluid
- Air Velocity
- Air Pressure Drop
- Capacity Sensible, latent
- Supply Air Temperature

COMMON CHILLED WATER SUPPLY TEMPERATURES

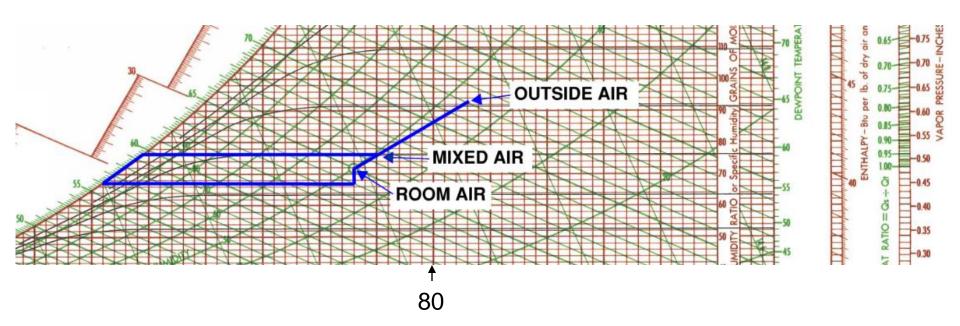
- 35 deg. F Ice Storage Systems
- 39 deg. F Chilled Water Storage
- 40 deg. F Common Supply Temperature for Systems using 15 deg. F Differential
- 42 deg. F District Energy Supply
- 44 deg. F District Energy Supply with Heat Exchanger
 Pressure Isolation, water treatment, freeze protection
- 45 deg. F Most of my career
- 50 deg. F Well Water Removed these systems in the 1990s.

COIL PERFORMANCE

- A Heating Coil only has to provide heat.
- A Cooling Coil has to remove two types of heat.
 - Sensible Heat Measurable temperature difference
 - Latent Heat Removal of water vapor
- Sensible Heat Ratio (SHR)


OFFICE COOLING LOAD CALCULATION

Office	1,000 Square Feet
	5 People
	85 CFM Outside Air
	25% glass


		Sensible	Latent
Lighting	1 watt/sq ft	3,413	
Computer	0.5 watt/sq ft	1,707	
Conduction – walls and glass		3,485	
Solar – Glass		3,432	
People		1,156	925
Outside Air Infiltration		446	553
		13,639	1,478
SHR		0.9	
Outside Air		893	1,107

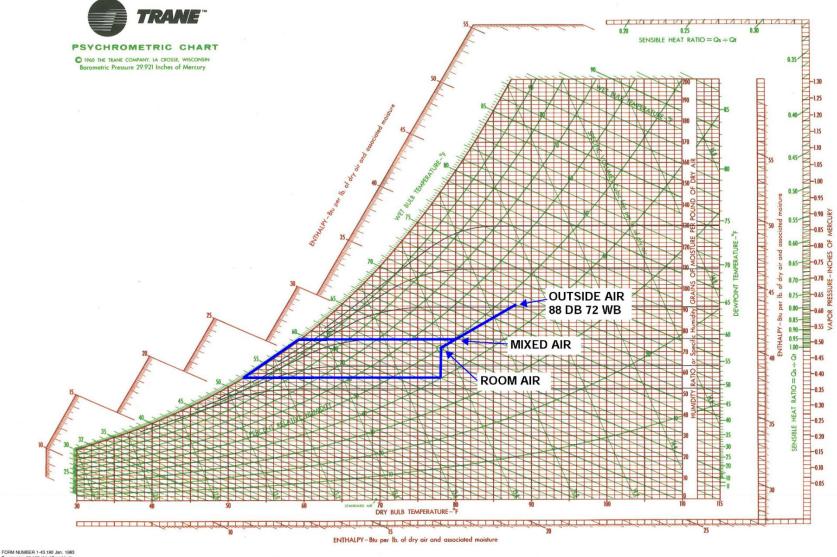
OFFICE COOLING

Psychrometric Chart

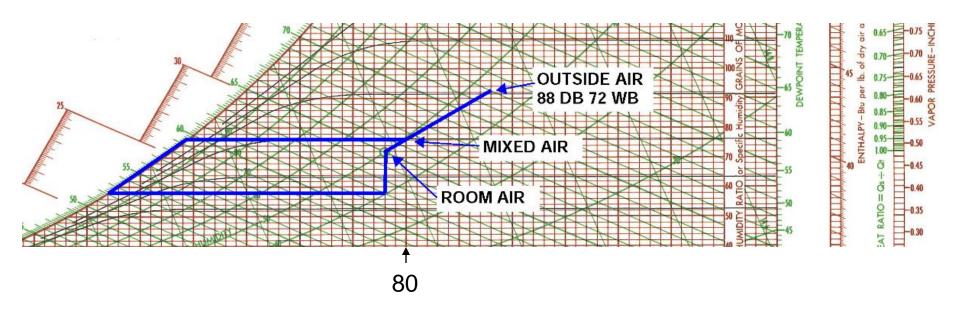
Psychrometric Chart - Office

CONFERENCE ROOM COOLING LOAD CALCULATION

Conference Room


1,000 Square Feet 50 People 310 CFM Outside Air 25% glass

		Sensible	Latent	BTU/Hr
Lighting	1 watt/sq ft	3,413		
Computer	0.2 watt/sq ft	683		
Conduction – walls and glass		3,485		
Solar – Glass		3,432		
People		11,350	7,150	
Outside Air Infiltration		446	553	_
		22,809	7,703	
SHR		0.75		
Outside Air		3,255	4,036	



CONFERENCE COOLING

Psychrometrics Chart

Psychrometrics Conference Cooling

COOLING WATER COIL SELECTIONS

	Number	Supply Water	Water Temp	Water	Water	APD	SA DB	SA WB
	of Rows	Temperature	Difference	GPM	PD		Temperature	Temperature
Presumed Original Coil	6	42	14	51	4.8	0.6	55	54.3
Presumed Original Coil	6	44	11.3	63	7	0.6	55	54.3
Presumed Original Coil	6	44	13	51	4.8	0.6	55.9	55
Higher Performance - 6 Row	6	44	15	46	4	0.6	55	54.7
Highest Performance - 6 Row	6	44	15	47	4	0.7	54	53.9
High Performance - 8 Row	8	44	15	56	7	0.85	52	51.9

HEATING HOT WATER COIL OPPORTUNITIES

- Long Time Standard 180 deg F supply and 20 deg F differential.
- Last Major Project was 140 deg F supply and 40 deg differential.
- Largest Hot Water differential that I have designed is 100 deg F.

Thank you!

